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A task: Text-driven image transformation
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A task: Text-driven image transformation

Contributions:

- Dataset and metrics to evaluate
change CAT to DOG algorithms on this task

- We propose a simple zero-shot
method and use it to assess
geometric properties of multimodal

embedding spaces
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Method Overview

T = Eimg(I) + X+ (Eige(wz) — Erge(w1))

Lambda is the scaling factor
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Evaluation (1)

- How to check if the transformation
was successful ?

- How to check if the context has not
been changed ?

We use (subject, relation,
object) annotations from the
Visual Genome dataset.

Transformation queries :
Change Subject / Change
Relation / Change Object.

We ensure that each
transformation query has a
valid solution in the dataset



Evaluation (2)

- Compute Image-Text similarity with
OSCAR [1]

-  “SIMAT score” : accuracy of
transformation success

[1] Li et al., Oscar: Object-Semantics Aligned
Pre-training for Vision-Language Tasks, ECCV 2020
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Examples

I
Image
Query
Transformation | e 0n. s Man Leaningon = = | 40 | guitcase Kite — Rail Boat — Bed Tennis racket ~
Query Jumping over Skateboard
Target A man balancing A horse jumping A catsittingona | Amanleaningon | A woman sittingin A ms\:tzlzylng
Caption on a surfboard. over a fence. suitcase. a rail. abed. skateboad
Retrieved
Image
Success
NO NO NO
(OSCAR) YES YES YES




Fine-tuning

- Finetune on MSCOCO (500k text/image

pairs)

- We study the importance of the

temperature parameter

Training batch
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Findings (1) : fine-tuning CLIP embeddings

60
=1
. . — 7=0.3
- Vanilla CLIP embeddings not well — [
50 - ——
H — 7=0.01
suited for delta-vector based i
transformation
o 40 A
5
@
. . 2
- Best performance when fine-tuning = 907
n
with temperature 1=0.1
20 A
10 A

00 05 10 15 20 25 30 35 4.0
Scaling Factor A



Findings (2): leveraging properties of pretrained sentence
encoders
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