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IMAGE RETRIEVAL WITH TEXTUAL FEEDBACK

CONDITIONED AND COMPOSED IMAGE RETRIEVAL EXAMPLE

Conditioned and composed image retrieval extends traditional CBIR
systems to improve their effectiveness by adding user feedback

I want a similar one but
~ blue with a different character

Add two more puppies
‘ and change the breed
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INTRODUCTION

OVERVIEW

» To address the conditioned and composed image retrieval tasks
we propose a two-stage approach based on CLIP [1] multimodal
features:
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INTRODUCTION

OVERVIEW

» To address the conditioned and composed image retrieval tasks

we propose a two-stage approach based on CLIP [1] multimodal
features:

1. We fine-tune the CLIP text encoder using a simple combination of
visual and textual features
2. We train from scratch a Combiner network that learns to fuse the

partially fine-tuned multimodal features

» The proposed two-stage approach achieves state-of-the-art
performance on FashionlQ [2] and CIRR [3] datasets
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FIRST STAGE

TEXT ENCODER FINE-TUNING

In this stage we perform a fine-tuning of the CLIP text encoder to
reduce the task mismatch between the large-scale image-text
pre-training and the downstream task
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FIRST STAGE
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SECOND STAGE

COMBINER TRAINING

In this second stage we train from scratch a Combiner network that
learns to combine the multimodal query features
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SECOND STAGE

COMBINER TRAINING

In this second stage we train from scratch a Combiner network that
learns to combine the multimodal query features
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COMBINER

ARCHITECTURE

The Combiner network outputs a normalized sum of multiple

components: a convex combination of text and image features and a
learned text-image mixture
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COMPARISON WITH SOTA

FASHIONIQ DATASET

Shirt Dress Toptee Average
Method R@10 | R@50 | R@10 | R@50 | R@IO | R@50 | R@IO | RE50
ARTEMIS [4] 21.78 | 43.64 | 27.16 | 52.40 | 29.20 | 54.83 | 26.05 | 50.29
RTIC-GCN w/GloVe [5] 23.79 | 47.25 | 2915 | 54.04 | 31.61 | 57.98 | 28.18 | 53.09
CoSMo [6] 2490 | 49.18 | 25.64 | 50.30 | 29.21 | 57.46 | 26.58 | 52.31
AACL[7] 24.82 | 48.85 | 29.89 | 55.85 | 30.88 | 56.85 | 28.53 | 53.85
DCNet [8] 23.95 | 4730 | 28.95 | 56.07 | 30.44 | 58.29 | 27.78 | 53.89
SACw/BERT [9] 28.02 | 51.86 | 26.52 | 51.01 | 32.70 | 61.23 | 29.08 | 54.70
Baldrati et al (RN50x4)[10] 35.76 | 56.20 | 27.20 | 53.57 | 36.31 61.14 | 33.09 | 56.99
Proposed approach (RN50) 35.77 | 57.02 | 31.73 | 56.02 | 36.46 | 62.77 | 34.65 | 58.60
Proposed approach (RN50x4) || 39.99 | 60.45 | 33.81 | 59.40 | 41.41 | 65.37 | 38.32 | 61.74

Table: Comparison between our method and current state-of-the-art models
on the Fashion-IQ dataset. Best scores are highlighted in bold, second-best
scores are underlined.
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COMPARISON WITH SOTA

CIRR DATASET

Recall@K Ryupset @K

Method K=1|K=5|K=10|K=50 | K=1|K=2|K=

TIRG' [11] 14.61 | 48.37 | 64.08 | 90.03 | 22.67 | 44.97 | 65.14
MAAF! [12] 10.31 | 33.03 | 48.30 80.06 | 21.05 | 41.81 | 61.60
MAAF-+BERT! [12] 10.12 | 33.10 48.01 80.57 | 22.04 | 42.41 | 62.14
ARTEMIS [4] 16.96 | 46.10 61.31 87.73 39.99 | 62.20 | 75.67
CIRPLANT *[3] 1518 | 43.36 | 60.48 87.64 33.81 56.99 | 75.40
CIRPLANT w/OSCAR * [3] 19.55 | 52.55 68.39 92.38 39.20 | 63.03 | 79.49
Proposed approach (RN50) 35.81 | 68.80 | 80.17 | 95.25 | 66.96 | 85.25 | 93.13
Proposed approach (RN50x4) || 38.53 | 69.98 | 81.86 95.93 | 68.19 | 85.64 | 94.17

Table: Comparison between our method and current state-of-the-art models
on the CIRR test set. Best scores are highlighted in bold, second-best scores
are underlined. T denotes results cited from [3]
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LIVE DEMO

Scan the QR Code to try a LIVE DEMO

ledia Integration and Communication Centel
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