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VISION & LANGUAGE PERSONALIZATION

Teach a pretrained model to recognize objects from a

few examples - allowing it to reason about them with free
language.

Challenges:
Risk forgetting prior knowledge

Accessing prior knowledge concurrently with newly
learned concepts.
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VISION & LANGUAGE PERSONALIZATION

Teach a pretrained model to recognize new objects from a
few examples - allowing it to reason about them with free
language.

This is “my toy wagon”




VISION & LANGUAGE PERSONALIZATION

Teach a pretrained model to recognize new objects from a
few examples - allowing it to reason about them with free
language.

Segment “The elephant on my toy wagon”

Frozen
CLIP




WHY IS IT IMPORTANT

In many domains collecting labelled data is
costly and hard

Leverage the power of pretrained models to
reason over a large body of prior knowledge
jointly with the personalized concepts.

IIIIIII



BASELINE (ADAPTER)

“A photo of a [My Skirt]”
|

A photo of a skirt
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KEY IDEA - @LEARNING

Learn to predict the
representation of the
new concept

ﬂn the deck with [My Sklh

Represent new R Few examples
concepts as input o of a new
n concept

representations, such
that they are correctly \ cup (74)
o

processed by the Encoder
frozen model.




KEY IDEA - @INFERENCE

Example: Personalized album search

“Standing with [My Skirt]
on a stone pathway”
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KEY IDEA - @INFERENCE

Example: Personalized album search

“Standing with [My Skirt]
I_' |_l on a stone pathway”

CLIP
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KEY IDEA - @INFERENCE

Example: Personalized album search

“Standing with [My Skirt]

I_' |_' on a stone pathway”
_
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HOW TO LEARN f,

Learn to predict the
representation of the
new concept

KA photo of a [My Skirt]’\ o>
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HOW TO LEARN f,




HOW TO LEARN f£,
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USE A CYCLE LOSS FOR LEARNING f,

Inmgesofa ‘dog” from COCO
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USE A CYCLE LOSS FOR LEARNING f,

Augmented text examples
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—1 a poodle in

1 the snow” ! \l ///

with @ poodie ¥ w. Learned
poodle boarding . .

on a atrain” = embedding
'eash -+ of [CONCEPT]

CLIP Text CLIP Text
Encoder Encoder
i \
;—» fo Set
>

¥4 Encoder
v

Z
loss(z, Z) T L

Eq. (1) CLIP spaces 7, T earned




LEARNING A PERSONALIZED CONCEPT

Word
embedding
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FURTHER TUNE THE PREDICTED CODE
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YouTubeVOS

for Personalized instance segmentation

[CONCEPT]
with a

white nose
patch.

“ b 4 | 7

DATASETS

[CONCEPT] is
closest to the
middle of the wire
fence

Deepfashion2
for Personalized image
retrieval'
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a rock front of
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Personalized instance segmentation

MAIN RESULT

(YouTubeVOS dataset)

0.30

e

[N]

v
1

0.20 4

Rate of loU > Threshold

—— Ours (Concept Only)
—— Ours (Rich Query)
—— Text (Rich Query)
Text (Concept Only)
COLLIE
AvgiM
AvgIM&Text

Ours

T AT R /) N
09 2 ] ,3}:*( \,k.

0.15
0.10
0.05
T T T T T T T T T
(@) o1 02 03 04 05 06 07 08 09
loU Threshold
Ours Ground Truth
. 4 L -~ )
P ~
b y Lhin
o

A bright orange [ CONCEPT]
with its full black dorsal fin and
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Personalized image retrieval
(Deepfashion2 dataset)
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SUMMARY

Extend the vocabulary of a pretrained vision and language
model, with novel personalized concepts.

Learn to map a set of images to word embeddings using a
cycle loss, with either image or augmented text.

Further tune a word-embedding by distinguishing it from a
“super-concept”

Inference: Simply use the word embedding, as just another
word in the vocabulary of the pretrained model
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