

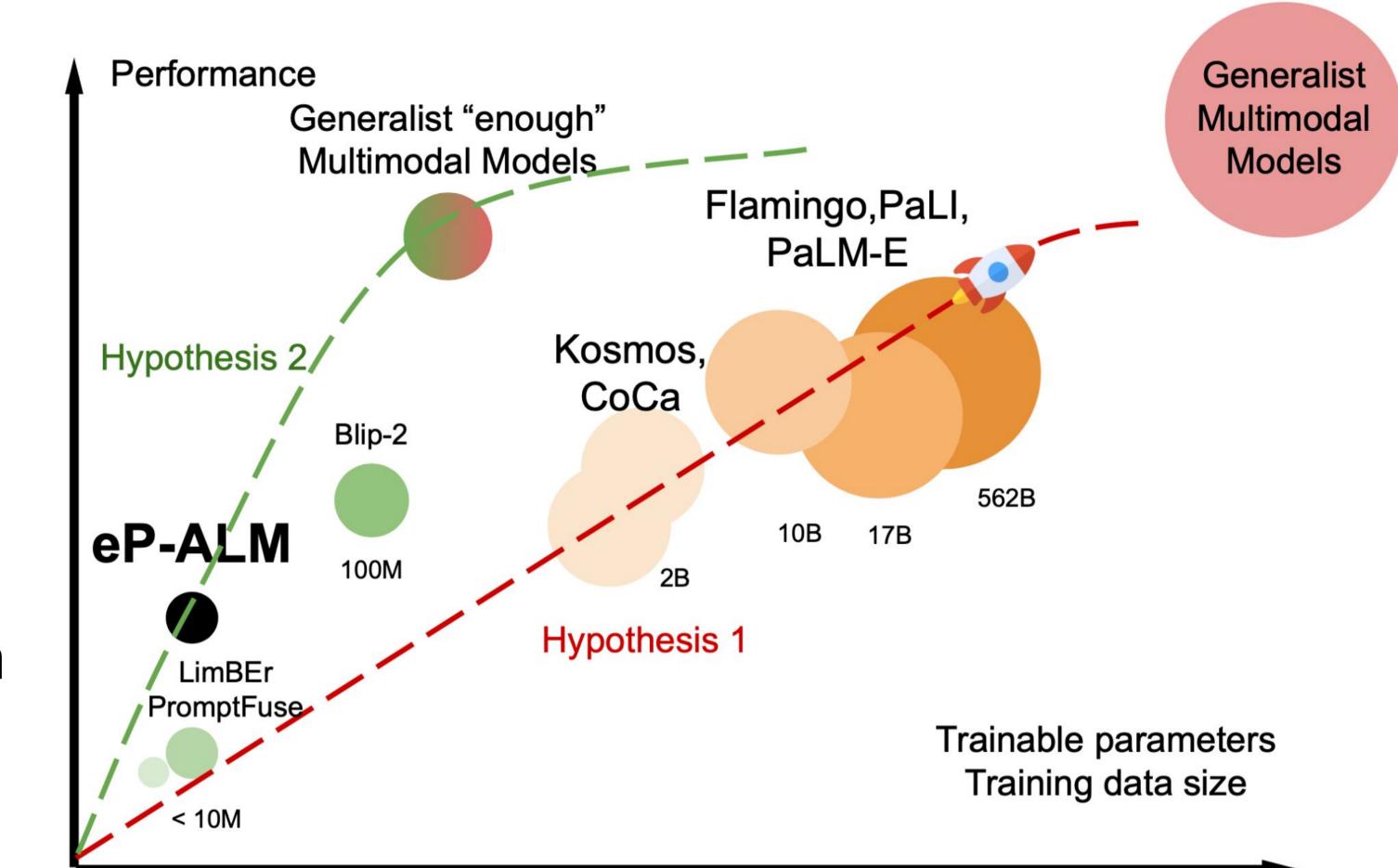
eP-ALM: Efficient Perceptual Augmentation of Language Models

Mustafa Shukor, Corentin Dancette, Matthieu Cord

Sorbonne University, ISIR, Paris, France

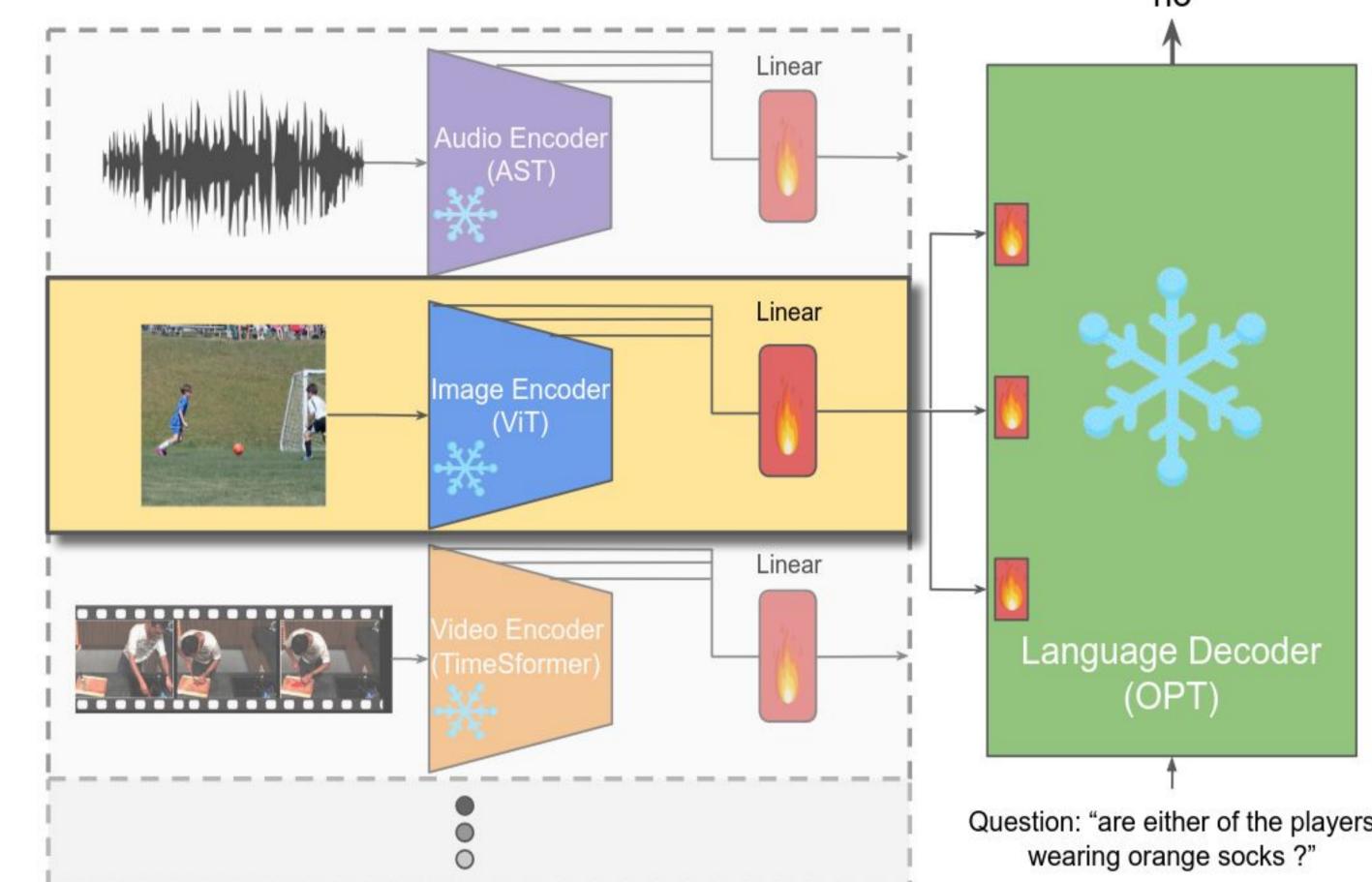
How to build generalist multimodal models?

- Hypothesis 1: scaling parameters, data and compute
- Hypothesis 2: efficient adaptation of large unimodal-pretrained models



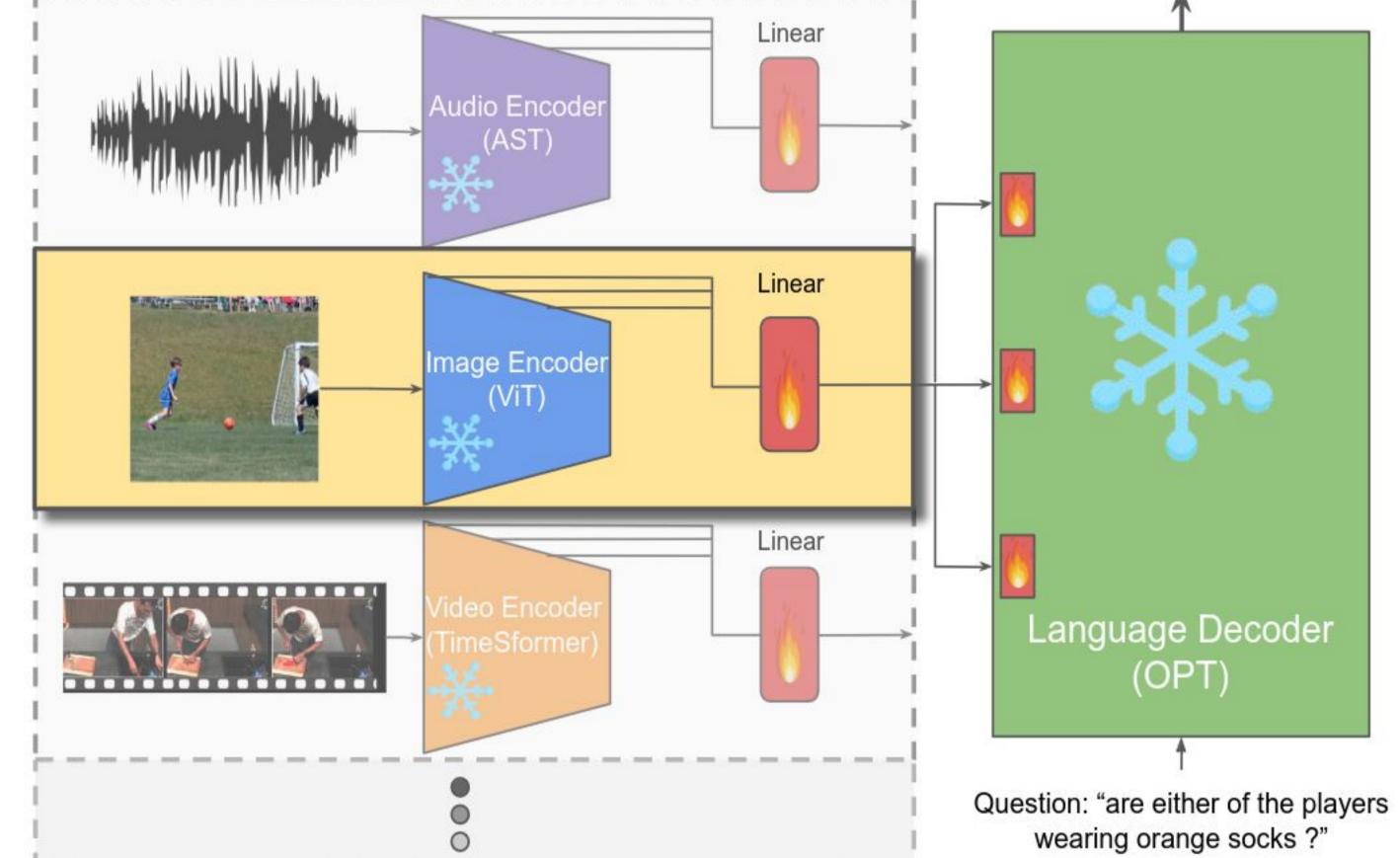
Summary of the work: efficient adaptation (linear projection) of frozen, pretrained, unimodal models (OPT and ViT) to solve multimodal tasks (VQA, Captioning) across image, video and audio modalities

- Trainable parameters < 0.06%
- No multimodal pretraining



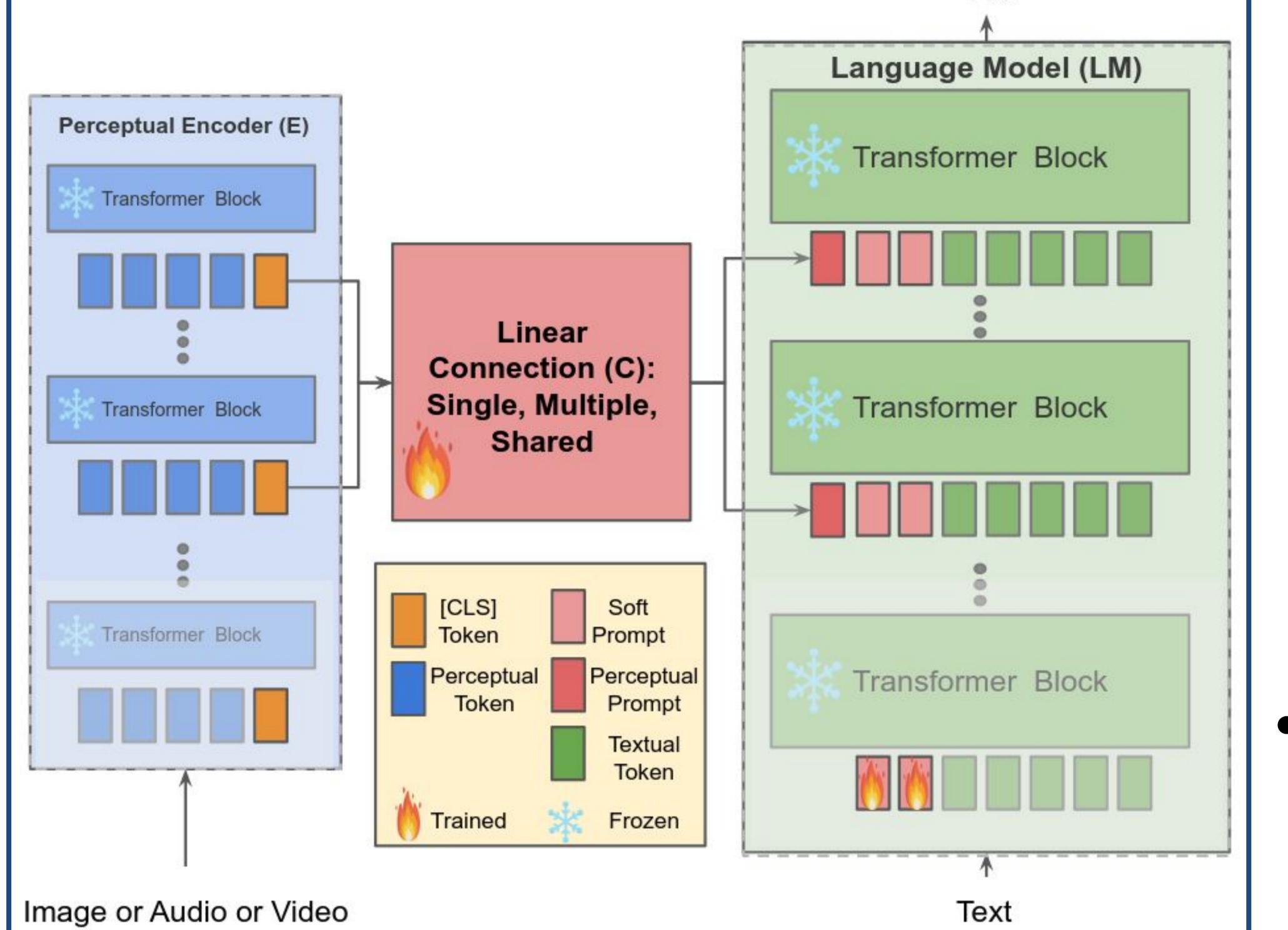
Direct Finetuning (eP-ALM)

- Efficient to train
- Generally better performance
- Easy to adapt to new tasks/datasets
- Efficient to adapt to new LLMs
- Task-specific finetuning



Pretrain-Zeroshot (e.g. LimBEr, Flamingo)

- Costly pretraining
- Limited performance, saturation with FS ICL
- Finetuning is needed for "new" datasets/tasks
- Pretraining is needed for a new LLM
- One training for many tasks



Proposed approach:

- Model:
- Language Model: OPT (2.7B)
- Unimodal Encoders: ViT-Base (ImageNet), TimeSformer-B (kinetics), AST-B (audioset)
- Adaptation parameters:
- Cross-Modal Connection: linear projection of the encoders' last layers visual/audio [CLS] tokens injected in the OPT's last layers
- Soft Prompt: 10 learnable tokens prepended to the text input
- Data: target dataset (e.g. COCO, VQAv2, AudioCaps, MSR-VTT)
- Training: training only adaptation parameters for few epochs

Image-Text tasks:

Method	VQA v2		GQA		C	COCO	
1,1001100	Val	Test	Val	Test	B@4	CIDEr	
PromptFuse [57]	34.1	_	_	_		_	
\mathbf{B}_{LimBEr}	34.1	33.5	30.81	29.4	_		
$\mathrm{B}_{PromptFuse}$	40.4	39.5	33.74	31.51	15.05	48.26	
\mathbf{B}_{MAGMA}	32.2	31.8	30.98	28.93	=	-	
eP - ALM_{pt}	48.8	47.8	43.8	40.3	27.52	91.92	
eP-ALM	50.7	50.2	45.0	40.4	29.47	97.22	
eP-ALM _{pt} -L	54.90	54.90	47.19	43.0	33.35	113.0	

Method	Train. data % (# of shots)	VQA v2
PromptFuse* [56]	0.12% (512)	29.40
eP-ALM	0.12% (512)	35.54
eP-ALM	1% (4.4K)	42.28
B_{LimBEr}	1% (4.4K)	28.9
$\mathrm{B}_{PromptFuse}$	1% (4.4K)	31.9
\mathbf{B}_{MAGMA}	1% (4.4K)	34.5

Q: what color is the bear? A: black and blue (blue

Main results

Data Efficiency

- Consistently better than other baselines that prepend visual tokens to the input layer and use adapters or prompt tuning
- More data-efficient

Video-Text tasks:

 Better zero-shot generalzation on VideoQA (and Image VQA)

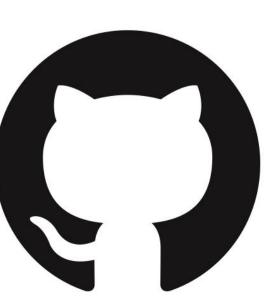
Method	Training data	Train. Param. (%)	OE Gen	MSRVTT-QA	MSVD-QA
JustAsk [95]	ActivityNet-QA	89.6%	X	2.7	(<u>4</u>)
JustAsk [95]	HowToVQA69M	89.6%	X	2.9	7.5
LAVENDER [53]	WebVid2.5M+CC3M	100%	X	4.5	11.6
MERLOT Reserve [100]	YT-Temporal-1B	100%	X	5.8	5.70
FrozenBiLM † [96]	400M-CLIP + VQA v2	2.9%	X	6.9	12.6
Flamingo 3B [2]	M3W+ALIGN+VTP	40%	1	11.0	27.5
eP-ALM	VQA v2	0.9%	/	13.17	24.82
eP-ALM †	VQA v2	0.9%	1	14.54	27.09

Image/Video/Audio-text tasks:

 Comparison with SoTA that trained with large number of parameters and most often with large-scale pretraining

Dataset (Metric)	SoTA (ZS)	eP-ALM (FT)	SoTA (FT)
AudioCaps (CIDEr)		63.6	66.7 (Liu et al. [59])
MSRVTT-QA (Acc)	17.4 (Flamingo80B [2])	36.7	44.1 (OmniVL [88])
MSR-VTT (CIDEr)		50.7	60 (MV-GPT [73])
COCO (CIDEr)	84.3 (Flamingo80B [2])	107.0	145.3 (OFA [89])
VQAv2 (Acc)	56.3 (Flamingo80B [2])	53.3	84.3 (PaLI [14])
GQA (Acc)	29.3 (FewVLM [43])	42.7	60.8 (VL-T5 [17])

Code



https://github.com/mshukor/eP-ALM