# Enhancing the Role of Context in Region-Word Alignment for Object Detection

Kyle Buettner<sup>1</sup>, Adriana Kovashka<sup>1,2</sup>

<sup>1</sup>Intelligent Systems Program, <sup>2</sup>Department of Computer Science, University of Pittsburgh, PA, USA buettnerk@pitt.edu, kovashka@cs.pitt.edu



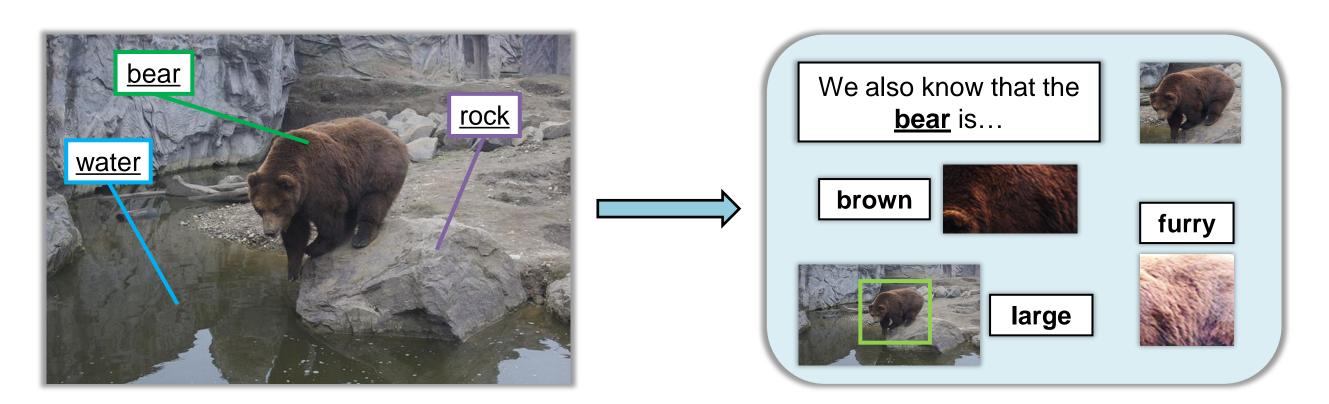
## **Background and Motivation**

University of Pittsburgh

- Learning vision-language alignment with contrastive learning and image-caption pairs has propelled open-vocabulary recognition and detection
- Object detectors trained with region-word grounding are typically evaluated with respect to how well object nouns are learned
- The impact and utility of other rich language context, especially object attributes, are underexplored

#### **Example Context in Captions**

a very large furry brown bear on a rock by the water.



- > Research questions
  - Does the existence of language context (adjectives, verb phrases, prepositional phrases) in vision-language pretraining help object detection?
- How can object detection effectively leverage contextualized word embeddings?
- ➤ Do learned object groundings capture **attribute meaning** from captions (*i.e. has the model learned what a red car is*)?
- Can contrastive negative caption sampling be used as a method to enhance attribute sensitivity?
- To answer these questions, we conduct a case study of **OVR-CNN**, a region-word pretraining framework for open-vocabulary detection

### **Context Enhancement Strategies of Exploration**

A contextualized grounding objective to learn better alignment

He is shooting an <u>orange</u> basketball. There are <u>oranges</u> on the table.







- > With a training recipe to maximize effectiveness in detection
  - Unfreezing the language encoder in PT and vision-tolanguage projection layer in FT
  - > Using a contextualization prompt in class embeddings
- Contrastive negative caption sampling to add attribute sensitivity
- When learning to match images to captions, for a given attributeobject pair, add two negatives, one with a **plausible adjective** (appearing with concept in dataset) and one with a **random noun**



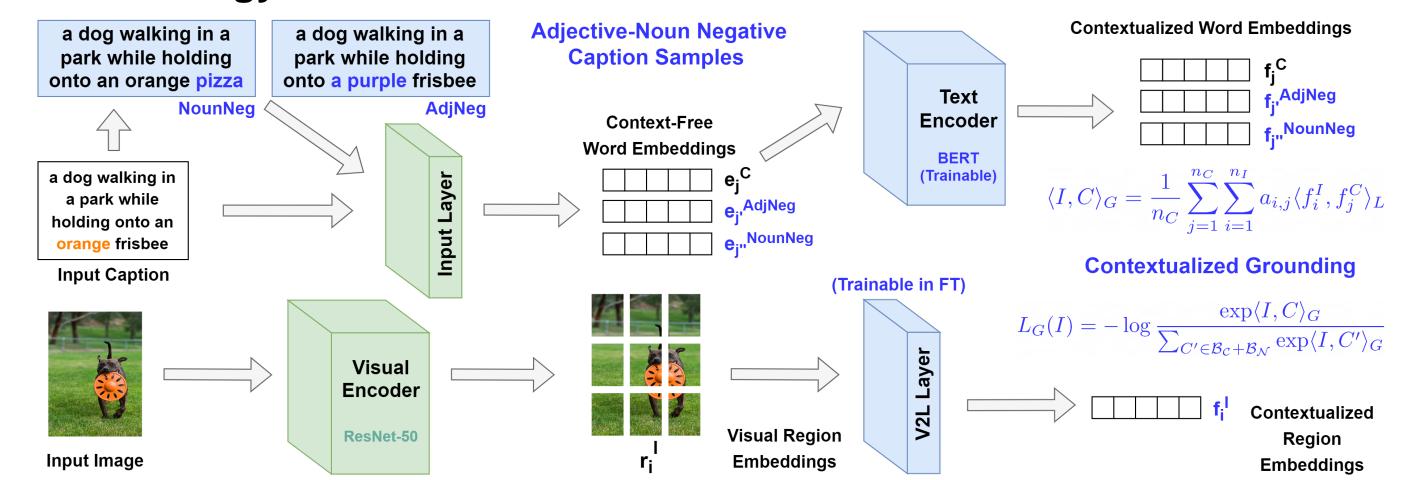
Caption: A <u>red car</u> is on the road.

Negatives Added to Batch:

A blue car is on the road.

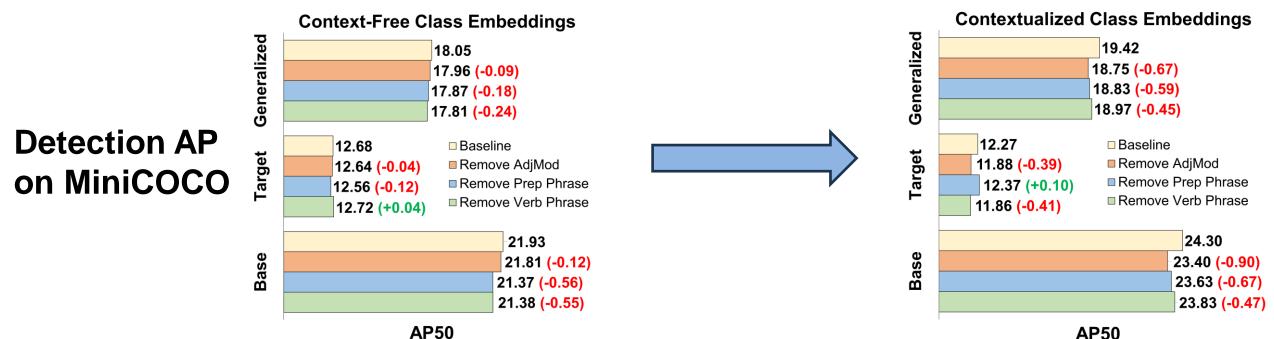
A red animal is on the road.

#### Methodology as Part of OVR-CNN Framework

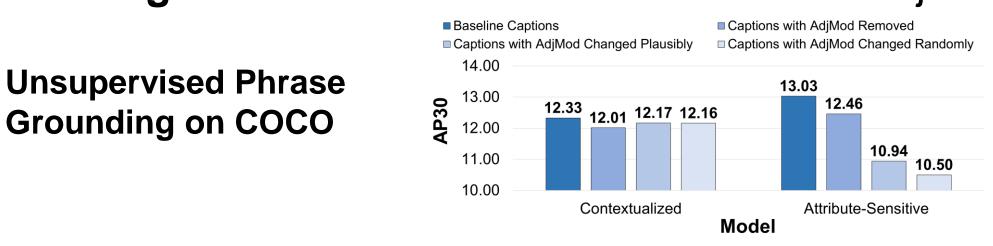


## **Results and Analysis**

- > Context is largely **ignored** in region-word pretraining for detection
  - > Replacing context-free with contextualized embeddings in the grounding objective makes context more impactful



- > Object alignment learned with contextualized word embeddings is not sensitive to attribute meaning
  - > Attribute negatives teach model to learn attribute-object concepts



Context enhancement strategies are especially effective in base and generalized settings for open-vocabulary object detection

**Open-Vocabulary Detection on COCO (3 trials)** 

| Pretraining Method                                | Base-Only        |      | Target-Only      |      | Generalized          |      |                       |      |                         |          |
|---------------------------------------------------|------------------|------|------------------|------|----------------------|------|-----------------------|------|-------------------------|----------|
|                                                   | $AP_{50}$        | Δ    | $AP_{50}$        | Δ    | All AP <sub>50</sub> | Δ    | Base AP <sub>50</sub> | Δ    | Target AP <sub>50</sub> | $\Delta$ |
| Attribute-Sensitive OVR-CNN (our top method)      | $35.81 \pm 0.09$ | +3.0 | $17.68 \pm 0.38$ | +1.9 | $28.79 \pm 0.17$     | +2.5 | $33.94 \pm 0.24$      | +2.6 | $14.24 \pm 0.34$        | +2.4     |
| w/o Plausible Adjective Negative (noun neg. only) | $35.25 \pm 0.19$ | +2.5 | $17.79 \pm 0.18$ | +2.0 | $28.33 \pm 0.12$     | +2.1 | $33.31 \pm 0.13$      | +2.0 | $14.24 \pm 0.13$        | +2.4     |
| w/o Random Noun Negative (context only)           | $35.18 \pm 0.13$ | +2.4 | $16.67 \pm 0.26$ | +0.9 | $28.26 \pm 0.20$     | +2.0 | $33.62 \pm 0.16$      | +2.3 | $13.12 \pm 0.30$        | +1.3     |
| w/o Contextualized Embeddings (best context-free) | $34.08 \pm 0.01$ | +1.3 | $19.09 \pm 0.72$ | +3.3 | $28.28 \pm 0.27$     | +2.0 | $33.19 \pm 0.12$      | +1.8 | $14.42 \pm 0.70$        | +2.6     |
| w/o BERT/V2L Training (original OVR-CNN) [35]     | $32.78 \pm 0.08$ | _    | $15.80 \pm 0.11$ | _    | $26.25 \pm 0.04$     | _    | $31.36 \pm 0.15$      | _    | $11.82 \pm 0.28$        | _        |

#### Conclusion

- We illustrate strategies to effectively use context for detection (contextualized grounding/adjective-noun negative sampling)
- Future work may consider methods to improve target performance or better leverage object relations and actions for detection

#### References

Zareian, Alireza, et al. "Open-vocabulary object detection using captions." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021.