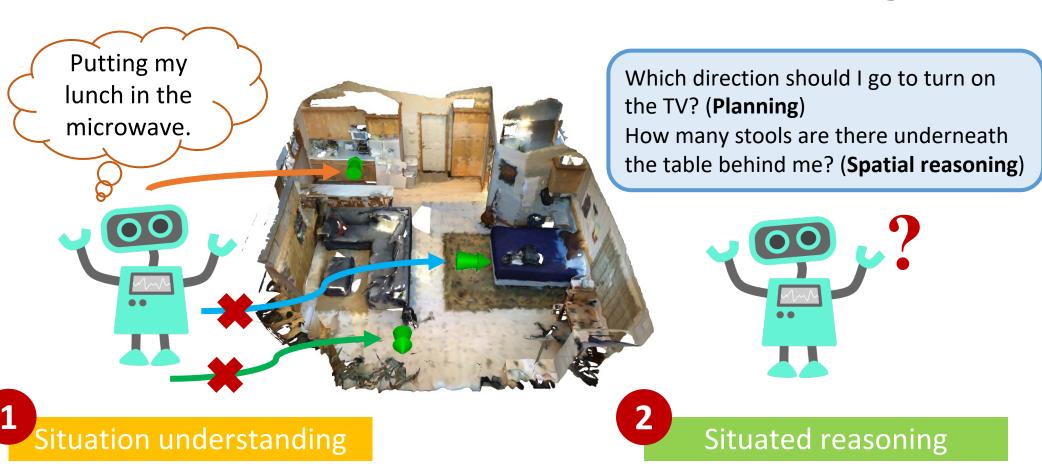
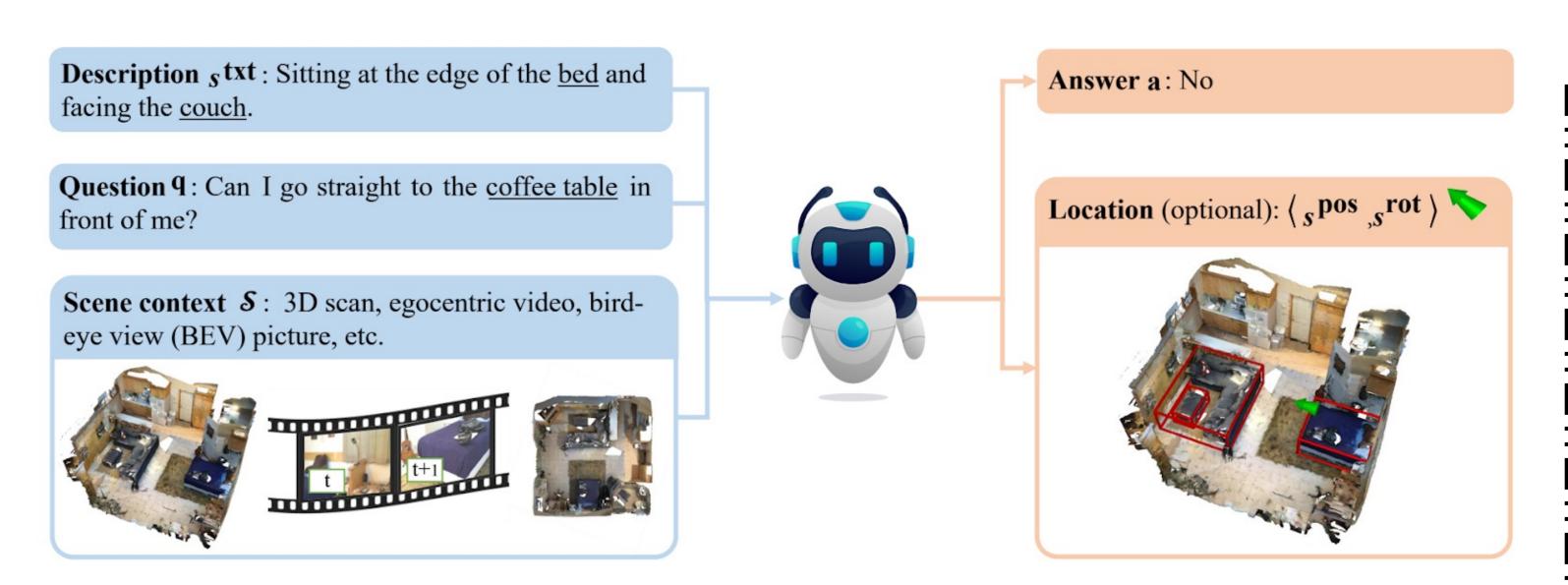
SQA3D: Situated Question Answering in 3D Scenes

Xiaojian Ma*, Silong Yong*, Zilong Zheng, Qing Li, Yitao Liang, Song-Chun Zhu, Siyuan Huang

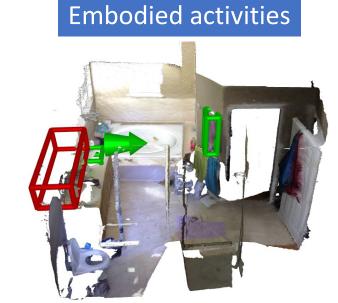
*equal contribution



Embodied AI + Scene Understanding


= Embodied Scene Understanding

We propose to bridge **embodied AI** and **3D scene understanding** with a new quest: **embodied scene understanding**, which includes two tasks:


- **1. Situated understanding**: agents understand the surroundings (situations) from a *dynamic*, *ego-centric* view.
- **2. Situated reasoning**: agents accomplish *reasoning & planning* according to current situation.

II What is SQA₃D?

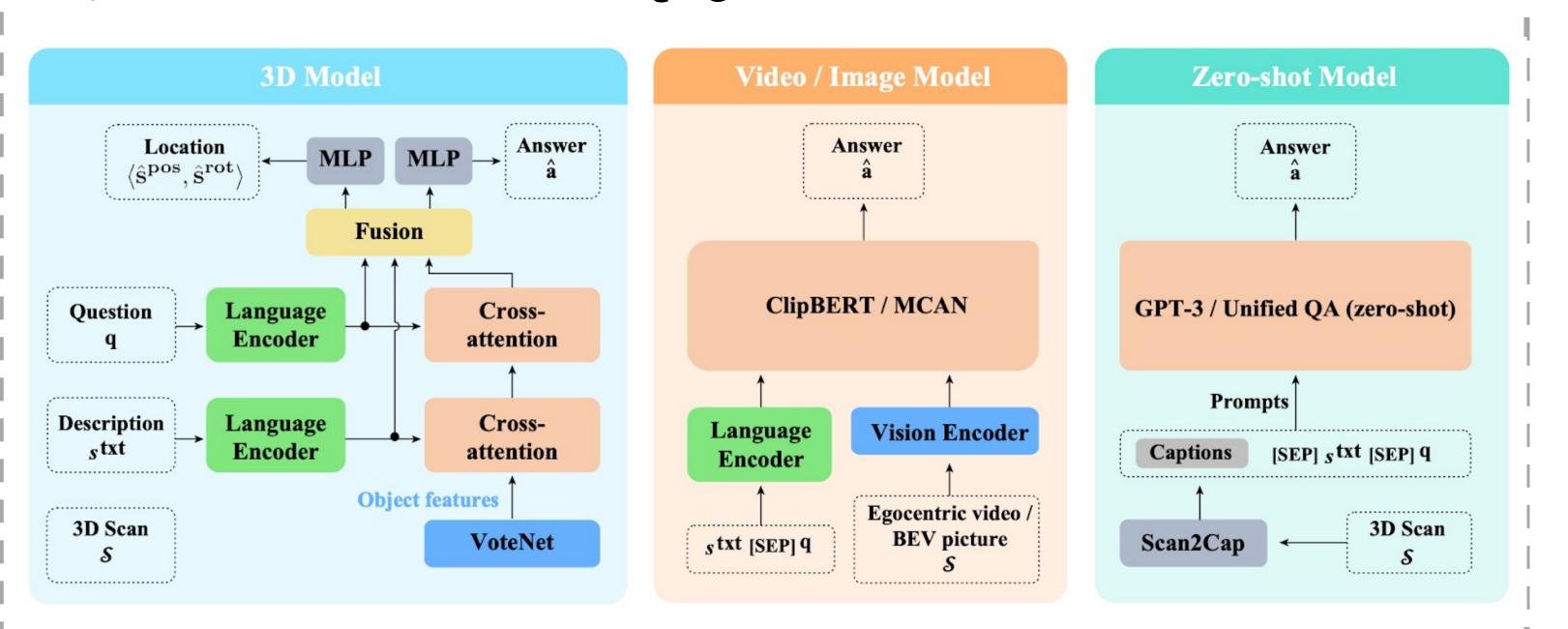
- Given a **3D** scene context S, situation description s^{txt} , the agents needs to first infer the corresponding position in the 3D scene (situation understanding), then answer a question q (situated reasoning).
- The 3D scene context S can be 3D scans, egocentric videos, or bird-eye view (BEV) pictures.
- The position is represented as: **position** s^{pos} (xyz) and **orientation** s^{rot} (quaternion). Predicting them is optional.

III SQA3D examples

stxt: Standing in front of the sink and facing the towels.

q: Can I see myself in the mirror?
a: No

Navigation


s^{txt}: Working by the desk and the window is on my right.
q: How many chairs will I

q: How many chairs will I pass by to open the window from other side of the desk?
a: Three

Common sense

s^{txt}: Just looking for some food in the <u>fridge</u>.
q: Which direction should I go to heat my lunch?
a: Right

IV Possible models for SQA3D?

*The categories here do not mean to be exhaustive.

- **3D** multimodal models: cross-attention transformer, 3D scans are processed by *VoteNet*. **Video/image** multimodal models: State-of-the-art video transformer (*ClipBERT*) and image transformer (*MCAN*).
- Zero-shot models: Large language models (LLMs), 3D scene is converted into text using scene captioning.

V Benchmarking results

	\mathcal{S}	Format	test set						
	0		What	Is	How	Can	Which	Others	Avg.
Blind test	-	$SQ \rightarrow A$	26.75	63.34	43.44	69.53	37.89	43.41	43.65
ScanQA (w/o s ^{txt})	3D scan	VQ→A	28.58	65.03	47.31	66.27	43.87	42.88	45.27
ScanQA	3D scan	$VSQ \rightarrow A$	31.64	63.80	46.02	69.53	43.87	45.34	46.58
ScanQA + aux. task	3D scan	$VSQ{\rightarrow}AL$	33.48	66.10	42.37	69.53	43.02	46.40	47.20
MCAN	BEV	VSQ→A	28.86	59.66	44.09	68.34	40.74	40.46	43.42
ClipBERT	Ego. video	$VSQ \rightarrow A$	30.24	60.12	38.71	63.31	42.45	42.71	43.31
Unified QA _{Large}	ScanRefer	VSQ→A	33.01	50.43	31.91	56.51	45.17	41.11	41.00
Unified QA _{Large}	ReferIt3D	$VSQ \rightarrow A$	27.58	47.99	34.05	59.47	40.91	39.77	38.71
GPT-3	ScanRefer	$VSQ \rightarrow A$	39.67	45.99	40.47	45.56	36.08	38.42	41.00
GPT-3	ReferIt3D	$VSQ \rightarrow A$	28.90	46.42	28.05	40.24	30.11	36.07	34.57
Human (amateur)	3D scan	VSQ→A	88.53	93.84	88.44	95.27	87.22	88.57	90.06

What can we learn from the results on SQA3D so far?

- **Situation understanding**. Models with better situation understanding (w/ s^{txt}, w/ aux. task) generally deliver better results (*aux. task means predicting the position from s^{txt}).
- Representation of 3D scenes. 3D scan could still to be *better* representation of 3D scenes than egocentric videos and BEV pictures.
- **Zero-shot models**. These models indeed have great potential in common sense reasoning, spatial language understanding, etc. But they could be *bottlenecked* by 3D captions.
- Human vs. machine. Amateur human participants that only learn from a handful of examples promptly master our tasks and the gap to the best model is still large (47.2% vs 90.06%).

Code Project page

Paper