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Motivation Experimental setting
e Problem definition: processing images and text to generate text (e.g., image captioning, e We evaluate our method on several vision-language benchmarks across two tasks:
VQA) o Image captioning (CC, , , )
e Impressive recent progress in learning vision-only and language-only pre-trained models o Few-shot VQA ( ' ’ ' )
(e.g., ) )] ) ’ )
e Research question: can we reuse such powerful unimodal models and efficiently adapt Domain-agnostic training dataset Pairs of in-domain captioning (training) and VQA (evaluation) datasets
them for multimodal vision-language downstream tasks? Conceptual Captions COCO Captions TextCaps VizWiz:Caps
e Issues with existing approaches (e.g., , ): ol . -
o Large number of trainable parameters (~40M to ~1 OB)
o Inserting adapter layers is not straightforward
o Learning vision encoders from scratch does not scale well i i PN m—— A tle wall with a red circle on it A can of green beans is sitting
festival in a city. very tall building. reading Mornington Crescent. on a counter in a kitchen.
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Quantitative results
Method . o
Domain-agnostic training
Image-caption pairs come from a domain agnostic of the downstream task
— N N 4| || Pretainedand frozen ° is competitive with existing and concurrent methods while training orders of
* — DA i magnitude fewer parameters on less multimodal data (bubble size)
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e Idea: learn a lightweight vision-language U g 5 g I . '9 .
. ; . S O — Image-caption pairs come from same domain as the downstream task
mapping between unimodal representation oo . o . _ .
spaces - S e Both and Frozen benefit from directly training on in-domain data, but the gap is
. g < G — larger for
o vision encoder s f— , .
(303M params) R Eneoder | = 1 — o outperforms Frozen on all considered tasks and benchmarks when training on
i X Dj —> » > » FC —> . .
— > = 100% of in-domain data
o language model . { BN BN _ . . .
(6.1B params) constant  — - = == ° trained on 1% of in-domain data generally outperforms Frozen trained on 100% of
embeddings | > e U in-domain data on 4-shot VQA
e Transformer-based . RN
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e Image-conditioned language modeling loss
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Benefits of our approach: s ;
e Orders of magnitude fewer trainable parameters s 7 50
e Can be trained in just a few hours B I I 0 I
e Uses modest computational resources and public datasets Y —— R TewaA P ——— ’ cc COCO  TextCaps  ViWizCaps  Overal
Frozen* (1%) MAPL (1%) [ Frozen* (100%) MAPL (100%) Frozen™ (1%) MAPL (1%) [ Frozen* (100%) MAPL (100%)

e Modular, hence easily extensible to newer/better pretrained unimodal models

Qualitative results
Vision-language few-shot prompting
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e Pretrained vision and language models can be repurposed for new VL tasks with
modest computational resources and public datasets
e We can leverage the in-context learning capabilities of the frozen language model to e MAPL matches or outperforms similar methods on several VL benchmarks with fewer
transfer to unseen vision-language tasks (e.g., VQA) trainable parameters and less training data
e The learned mapping network allows us to feed visual context to the language model|, e MAPL is effective in low-data and in-domain settings, useful when training with
enabling multimodal prompting large-scale datasets is difficult

e Now the language model is able to “see”! e Effective recycling of large pretrained models is becoming increasingly important
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