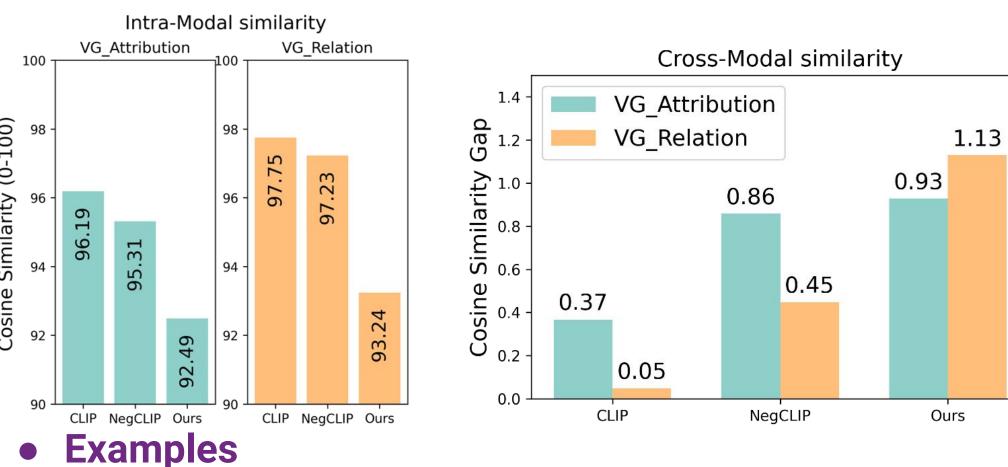
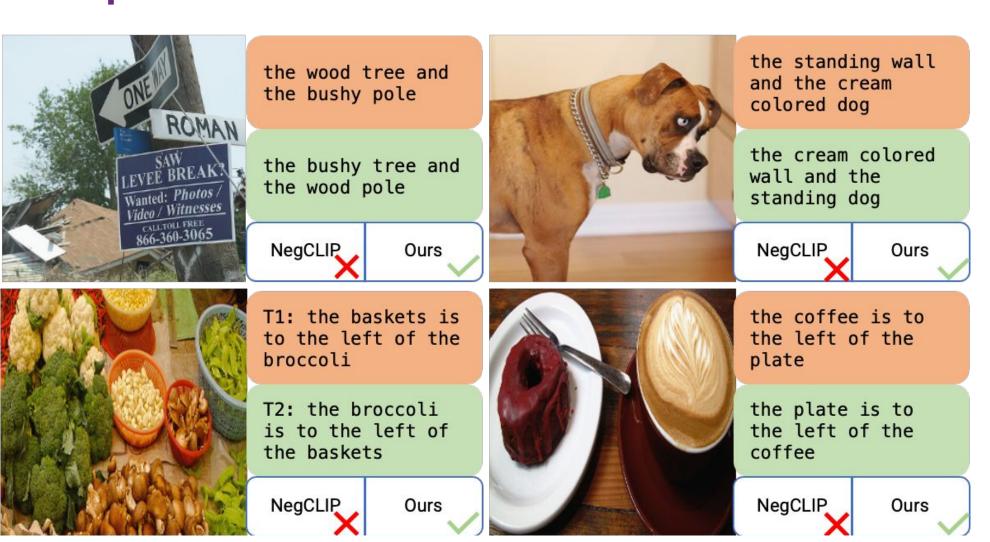
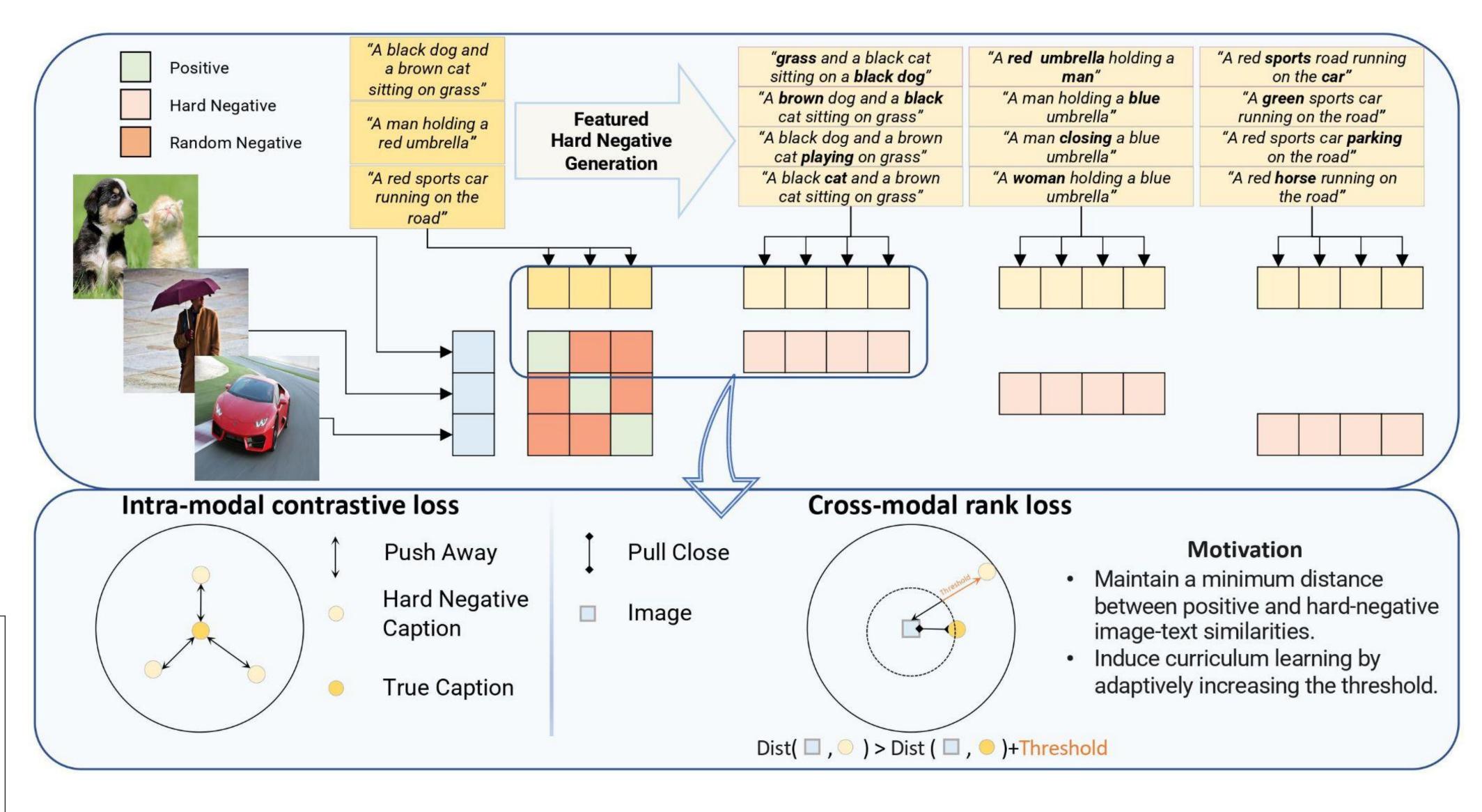



## Contrasting Intra-modal and Ranking Cross-Modal Hard Negatives to Enhance Visio-Linguistic Fine-Grained Understanding





Le Zhang, Rabiul Awal, Aishwarya Agrawal Mila - Quebec Al Institute, Université de Montréal

#### • Task: fine-grained understanding (relation, attribution, object existence)




- Limitation of current models
- High intra-modal similarity between positive and hard negative captions
- Small gap between true and hard negative image-text cross-modal similarity





#### Method



- Intra-Modal Contrastive (IMC) loss
- Cross-Modal Rank (CMR) loss with adaptive threshold

# $\mathcal{L}_{itc(hn)} = \sum_{(I,T)\in\mathcal{B}} - \left( \log \frac{\exp^{S(I,T)}}{\sum_{T_i\in\mathcal{B}} \exp^{S(I,T_i)} + \sum_{T_i\in\mathcal{T}_{hn}} \exp^{S(I,T_k)}} + \log \frac{\exp^{S(I,T)}}{\sum_{I_i\in\mathcal{B}} \exp^{S(I_j,T)}} \right)$

$$\mathcal{L}_{imc} = \sum_{(I,T) \in \mathcal{B}} -\log \frac{\exp^{S(I,T)}}{\sum_{T_k \in \mathcal{T}_{hn}} \exp^{S(T,T_k)}}$$

$$\mathcal{L}_{cmr} = \sum_{(I,T) \in \mathcal{B}} \sum_{T_k \in \mathcal{T}_{hn}} max(0, S(I, T_k) - S(I, T) + Th_k^t)$$

$$Th_k^t = \frac{1}{|\mathcal{B}|} \sum_{(I,T) \in \mathcal{B}} (S^{t-1}(I,T) - S^{t-1}(I,T_k))$$

$$\mathcal{L} = \mathcal{L}_{itc(hn)} + \alpha \cdot \mathcal{L}_{imc} + \beta \cdot \mathcal{L}_{cmr}$$

### **Experiments**

| Model     | ARO      |             | VALSE       |           |          |           |         |             |         |       |  |
|-----------|----------|-------------|-------------|-----------|----------|-----------|---------|-------------|---------|-------|--|
|           | Relation | Attribution | Existence   | Plurality | Counting | Relations | Actions | Coreference | Foil-it | Avg   |  |
| Random    |          |             |             |           | 50       |           |         |             |         |       |  |
| BLIP      | 59.0     | 88.0        | 86.3        | 73.2      | 68.1     | 71.5      | 69.1    | 51.0        | 93.8    | 69.96 |  |
| LXMERT†   | 27       | -           | 78.6        | 64.4      | 58.0     | 60.2      | 50.3    | 45.5        | 87.1    | 59.6  |  |
| CLIP      | 59.3     | 62.9        | 68.7        | 57.1      | 61.0     | 65.4      | 74.8    | 52.5        | 89.8    | 65.3  |  |
| NegCLIP   | 80.2     | 70.5        | 76.8        | 71.7      | 65.0     | 72.9      | 83.2    | 56.2        | 91.9    | 71.6  |  |
| CLIP Ours | 83.0     | 76.4        | <b>78.6</b> | 77.7      | 64.4     | 74.4      | 84.9    | 54.7        | 93.7    | 72.5  |  |
| XVLM-coco | 73.4     | 86.8        | 83.0        | 75.6      | 67.5     | 69.8      | 71.2    | 48.0        | 94.8    | 69.5  |  |
| XVLM Ours | 73.9     | 89.3        | 83.3        | 73.8      | 69.8     | 70.0      | 71.5    | 48.4        | 93.3    | 70.8  |  |

Table 2: Results (%) of ARO and VALSE, the best scores for each section emphasized in boldface. † represents scores extracted from papers.

|                              | VL-CheckList                |                             |                             |                             |                           |                             |                             |                             |                             |                             |
|------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|---------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
| Model                        | Attribute                   |                             |                             |                             |                           | Object                      |                             | Relation                    |                             | Avg                         |
|                              | Action                      | Color                       | Material                    | Size                        | State                     | Location                    | Size                        | Action                      | Spatial                     |                             |
| Random Chance                | 50                          |                             |                             |                             |                           |                             |                             |                             |                             |                             |
| BLIP†<br>CLIP-SVLC†          | 79.5<br>69.4                | 83.2<br>77.5                | 84.7<br>77.4                | 59.8<br>73.4                | 68.8<br>62.3              | 83.0                        | 81.3                        | 81.5<br>74.7                | 59.5<br>63.2                | 75.7<br>-                   |
| CLIP<br>NegCLIP<br>CLIP Ours | 70.5<br>72.1<br><b>75.6</b> | 69.4<br><b>75.7</b><br>72.7 | 69.5<br>78.1<br><b>79.7</b> | 60.7<br>61.3<br><b>65.3</b> | 67<br>67.3<br><b>69.8</b> | 80.2<br>84.4<br><b>84.8</b> | 79.7<br>83.8<br><b>84.5</b> | 72.2<br><b>80.7</b><br>78.5 | 53.8<br>57.1<br><b>65.0</b> | 69.2<br>73.4<br><b>75.1</b> |
| XVLM-coco<br>XVLM Ours       | 80.4<br><b>80.5</b>         | <b>81.1</b> 76.0            | <b>83.1</b> 80.6            | 60.3<br><b>67.2</b>         | <b>70.8</b> 69.8          | 86.3<br><b>87.3</b>         | 85.3<br><b>86.6</b>         | 79.0<br><b>80.8</b>         | 61.8<br><b>78.6</b>         | 76.5<br><b>78.6</b>         |

Table 3: Results (%) of VL-CheckList. † represents scores are extracted from papers.

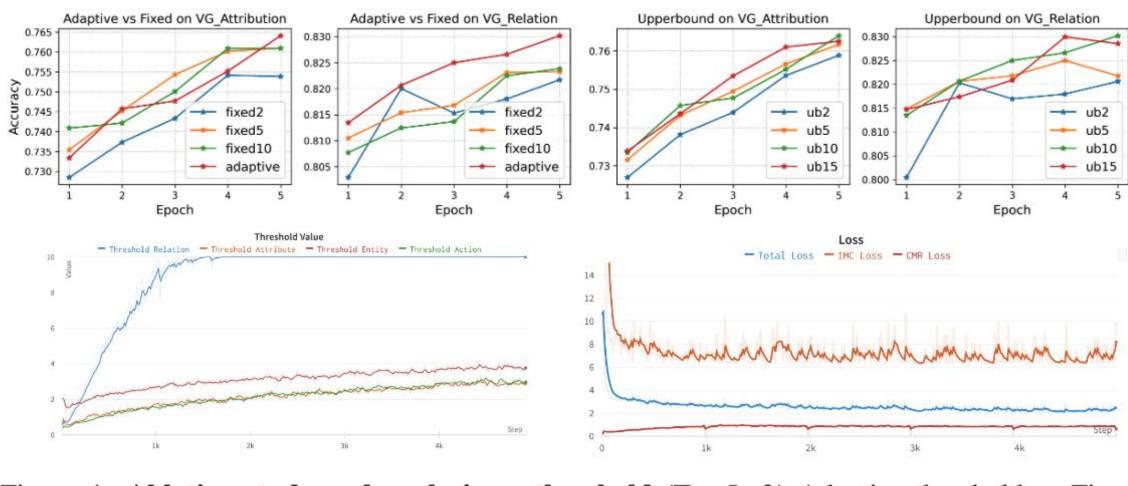



Figure 4: Ablation study and analysis on threshold (Top Left) Adaptive threshold vs Fixed threshold; (Top Right) Performance with different upper bound values.; (Bottom Left) Curves showing how the thresholds evolve over time; (Bottom Right) Proposed loss curves change over time

#### Conclusion

- Hard-negatives can largely improve fine-grained understanding of **VLMs**
- Teaching models to contrast intra-modal hard negatives improve cross-modal fine-grained understanding
- Cross-modal rank encourage model to better distinguish between positive and hard negative image-text pairs, adaptive threshold entails curriculum learning