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 Contributions
● Adaptive Angular Margin Loss
○ A novel loss formulation manipulating the multimodal feature 

space, where the margins are estimated both from the training data 
and the model predictions.

○ Achieves state-of-the-art performance on the VQA-CP benchmark.
○ Model-agnostic.

● Robust to Answer Distribution of test set
○ Test-time ensembling makes the model generalisable to the in-

domain VQA-v2 validation set.

Language Bias problem in VQA

Adaptive Margin Calculation Test-time Ensembling
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Performance on VQA-CP v2 and VQA-v2
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What colour is the dog?

● Avoid overfitting of the calculated frequency-based margins to the 
sparse answers (like Black) by by passing them through a Gaussian [2], 

i.e.   𝑚)*+
, [𝑖] = 𝒩(𝑚-)./

, , 𝜎), where 𝑖 = 1,2, … , |𝒜|. 𝜎 is a hyper-
parameter

● Finally, the randomised margins are calculated by inverting the above, 

i.e.𝑚)*+
, [𝑖] = 1 −𝑚)*+

, [𝑖]
                                    

The final angular margin loss becomes:
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● The bias-injecting component clusters the feature space based on the 
bias - the question type. 

● We use a supervised contrastive loss[3] based on the answers - keeps 
each answer within a question type distinct in the feature space 

Finally, the total loss becomes: ℒ = 𝐿&'()*+,(𝑚#$%") + 𝐿6 + 𝐿6)AB#$'
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Overview of RMLVQA and the learnt margins
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Method VQA-CP (OOD) VQA-V2 (ID) Diff
UpDn (ERM) 39.74% 63.48% 23.74%

RUBi 47.11% - -

LMH 52.15% 56.35% 4.2%

CF-VQA 55.05% 60.94% 5.89%
AdaVQA (Margin 

Loss) 54.02% 46.98% 7.04%

RMLVQA (Ours) 60.41% 59.99% 0.42%

Further Analysis of Model Performance
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Feature space, when trained by (a) the vanilla margin loss, (b) the randomised 
margin loss, (c) randomised margin loss + bias-injecting component

Let 𝑥 be the final feature vector, and 𝑊 be the weight matrix for the classifier.


