JUNE 18-22, 2023						
iolog 7 e es trats Crassification	Materials Magnets	Geography State capitals Geography Maps	History Colonia English The Am	I America colonies in North nerican Revolution	America	Civics Social skills Government The Constitution
https://science Ecosystems Classification Scientific names Heredity Ecological interactions	Particle motion and energy Heat and thermal energy States of matter Kinetic and potential energy Mixture	Oceania: geography Physical Geography The Americas: geography Oceans and continents Cities States	World Greece Ancient World r America Medieva	History Mesopotamia eligions an history al Asia	Economics Basic econo Supply and Banking and Global Stud Society and	mic principles demand I finance
Cells Plants Animals Plant reproduction	Chemistry Solutions Physical and chemical change Atoms and molecules	Writing Strategies Supporting arguments Sentences, fragments, and run Word usage and nuance	-ons	Vocabulary Categories Shades of meanin Comprehension st	g trategies	VerbsVerb tenseCapitalizationFormatting
Earth Science Weather and climate Rocks and minerals Astronomy Fossils	Chemical reactions Engineering Designing experiments Engineering practices	Creative techniques Audience, purpose, and tone Pronouns and antecedents Persuasive strategies Editing and revising		Context clues Grammar Sentences and fra Phrases and claus	gments es	PunctuationFragmentsPhonologyRhyming
Earth events Plate tectonics	Units and Measurement Weather and climate	Visual elements Opinion writing		Figurative Lange Literary devices	lage	Reference Research skills

- We propose Science Question Answering (ScienceQA), a new dataset that contains 21,208 MC questions with multimodal contexts from the science curriculum. ScienceQA is the first large-scale multimodal science dataset that annotates lectures and explanations
- We show that Chain of Thought (CoT) benefits large language models in both few-shot and fine-tuning settings by improving model performance and reliability via generating explanations

The ScienceQA Dataset

Question distribution Main statistics Statistic Number 21,208 **Total questions** 10,220 (48.2%) Ouestions with text context 10,332 (48.7%) Questions with image context * Image of natural format $\approx 2,960 (14.0\%)$ * Image of diagram format $\approx 7.372 (34.8\%)$ 6,532 (30.8%) Questions with both contexts 7,188 (33.9%) Ouestions without any context 17,798 (83.9%) Questions with a lecture 19,202 (90.5%) Questions with a explanation has a solution 9,122 Different questions 261 Different lectures Topic classes 127 Category classes 379 Skill classes 12.11 Average question length Average choice length 4.40 125.06 Average lecture length 47.66 Average explanation length

• ScienceQA is collected from elementary and high school science curricula and contains **21,208** examples

- 48.7% have an image context, 48.2% have a text context, and 30.8% have both
- 83.9% are annotated with a lecture, and 91.3% with an explanation

Comparisons with existing VQA and Science datasets

	#Q	#I	AvgQ	MaxQ	Grades	Science subjects	Contexts	Images	Lecture I	Explanation
Geometry3K [30]	3,002	2,342	10.1	46	6-12	natural (geometry)	image	diagram	×	×
AI2D [16]	4,563	4,903	9.8	64	1-6	natural	image	diagram	×	×
FOODWEBS [23]	≈5,000	\approx 5,00	-	-	8	natural (foodweb only)	image	diagram	×	×
ARC [5]	7,787	0	20.4	128	3-9	natural	×	×	×	×
TQA [17]	26,260	3,455	9.2	57	6-8	natural	image, text	diagram	V	×
IconQA [34]	107,439	96,817	8.4	73	PreK-3	math	visual	diagram	×	×
WorldTree [12]	1,680	0	_		3-5	natural	×	×	×	v
OpenBookQA [36]	5,957-	— V Q A	10.6	68	1-6	natural	×	×	×	
³⁰ ASC [19]	9,980		8.0	25	1-9	natural	×	×	×	
² SCIENCEQA (ours)	21,208	10,332	tr <u>yb2.1</u>	141	1-12	natural, social, language	image, text n	atural, diagram	v	v
²⁰ •15 ScienceQA is mu	ch large	Science r than r	eQA (ours nost e	xisting	datasets	s and different from in	various aspe	cts		

soning via Thought Chains for Science Question Answering

iang Qiu¹, Kai-Wei Chang¹, Song-Chun Zhu¹, Oyvind Tafjord³, Peter Clark³, Ashwin Kalyan³ ornia, Los Angeles ²Arizona State University ³Allen Institute for Al

Domain Diversity of ScienceQA

aits ion is heredity s ion names	PhysicsMaterialsMagnetsVelocity and forcesForce and motionParticle motion and energyHeat and thermal energyStates of matter	Geography State capitals Geography Maps Oceania: geography Physical Geography The Americas: geography Oceans and continents	Histor Coloni Englis The An World Greece Ancier World
interactions	Kinetic and potential energy Mixture	Cities States	Ameri Medie
duction	ChemistrySolutionsPhysical and chemical changeAtoms and moleculesChemical reactions	Writing Strategies Supporting arguments Sentences, fragments, and run Word usage and nuance Creative techniques	-ons
nd climate minerals	Engineering Designing experiments Engineering practices	Audience, purpose, and tone Pronouns and antecedents Persuasive strategies	
ts nics	Units and Measurement Weather and climate	Visual elements Opinion writing	

Methods and Main Results

Baselines and GPT-3 (CoT)

Question: question: I_i^{ques}	\
Options: (A) option : I_{i1}^{opt} (B) option : I_{i2}^{opt} (C) option : I_{i3}^{opt}	
Context: context : I_i^{cont}	•
Answer: The answer is answer : I_i^a . BECAUSE: lecture : I_i^{lect} explanation : I_i^{exp}	•
Question: question: I_t^{ques}	-
Options: (A) option : I_{t1}^{opt} (B) option : I_{t2}^{opt} (C) option : I_{t3}^{opt} (D) option : I_{t4}^{opt}	
Context: context : I_t^{cont}	(
Answer:	

Results on ScienceQA

Model	Learning	Format	NAT	SOC	LAN	TXT	IMG	NO	G1-6	G7-12	Avg	
Random chance	-	M→A	40.28	46.13	29.25	47.45	40.08	33.66	39.35	40.67	39.83	
Q only [1]	train set	Q→A	41.34	27.22	47.00	41.79	35.15	44.60	39.28	40.87	39.85	
C_I only [1]	train set	$C_I \rightarrow A$	41.34	29.25	45.45	42.33	36.09	42.93	39.21	41.07	39.87	 Blind studies show that all input
Q+M only [1]	train set	$QM \rightarrow A$	52.66	51.86	60.18	55.57	50.37	57.42	52.53	57.88	54.44	componente provide critical
$Q+C_T+M$ only [1]	train set	$QC_TM \rightarrow A$	57.28	49.04	<u>61.36</u>	60.46	52.80	<u>58.82</u>	54.44	60.51	56.61	components provide childar
$Q+C_I+M$ only [1]	train set	$QC_IM \rightarrow A$	58.97	<u>53.77</u>	60.45	<u>62.85</u>	<u>54.49</u>	57.63	<u>56.72</u>	<u>61.04</u>	58.26	information for question answering
MCAN [54]	train set	QCM→A	56.08	46.23	58.09	59.43	51.17	55.40	51.65	59.72	54.54	
Top-Down [1]	train set	QCM→A	59.50	54.33	61.82	62.90	54.88	59.79	57.27	62.16	59.02	
BAN [20]	train set	QCM→A	60.88	46.57	66.64	62.61	52.60	<u>65.51</u>	56.83	63.94	59.37	
DFAF [8]	train set	QCM→A	64.03	48.82	63.55	65.88	54.49	64.11	57.12	67.17	60.72	 Current VQA models are not well
ViLT [21]	train set	QCM→A	60.48	63.89	60.27	63.20	61.38	57.00	60.72	61.90	61.14	generalized to ScienceQA
Patch-TRM [34]	train set	QCM→A	<u>65.19</u>	46.79	<u>65.55</u>	<u>66.96</u>	55.28	64.95	58.04	<u>67.50</u>	61.42	3
VisualBERT [25, 26]	train set	QCM→A	59.33	<u>69.18</u>	61.18	62.71	<u>62.17</u>	58.54	<u>62.96</u>	59.92	<u>61.87</u>	
UnifiedQA _{SMALL} [47]	zero-shot	QCM→A	47.78	40.49	46.00	50.24	44.12	44.39	45.56	46.21	45.79	
UnifiedQA _{BASE} [47]	zero-shot	QCM→A	50.13	44.54	48.18	53.08	48.09	46.69	47.58	50.03	48.46	• The fine-tuned UnifiedOA model (
UnifiedQA _{SMALL} [47]	train set	QCM→A	53.77	58.04	61.09	52.10	51.51	61.46	58.22	53.59	56.57	
UnifiedQA _{BASE} [47]	train set	QCM→A	68.16	69.18	74.91	63.78	61.38	77.84	72.98	65.00	70.12	benefit from Col
UnifiedQA _{BASE} (CoT)	train set	QCM→AE	70.60	74.02	78.36	65.69	64.80	81.53	75.48	<u>69.48</u>	73.33 _{3.21↑}	
UnifiedQA _{BASE} (CoT)	train set	QCM→ALE	<u>71.00</u>	<u>76.04</u>	<u>78.91</u>	<u>66.42</u>	<u>66.53</u>	81.81	77.06	68.82	$ $ <u>74.11</u> _{3.99} \uparrow	CDT 2 shows its nowar in both Tor
GPT-3 [4]	zero-shot	QCM→A	75.04	66.59	78.00	74.24	65.74	79.58	76.36	69.87	74.04	• GP1-3 shows its power in both Zer
GPT-3 [4]	2-shot	QCM→A	74.64	69.74	76.00	74.44	67.28	77.42	76.80	68.89	73.97	snot and tew-snot settings
GPT-3 (CoT)	2-shot	QCM→AE	76.60	65.92	77.55	75.51	66.09	79.58	78.49	67.63	74.61 _{0.64↑}	 2-shot GPT-3 (CoT) achieves a S⁴
GPT-3 (CoT)	2-shot	QCM→ALE	75.44	70.87	78.09	74.68	67.43	<u>79.93</u>	78.23	69.68	75.17 _{1.20↑}	accuracy of 75.17%
Human	-	QCM→A	90.23	84.97	87.48	89.60	87.50	88.10	91.59	82.42	88.40	 Humans perform much better
												•

Evaluations of generated explanations

Model	Format	BLEU-1	BLEU-4	ROUGE-L	Similarity	Relevant	Correct
UnifiedQA _{BASE} (CoT)	QCM→ALE	0.397	0.370	0.714	0.811	80.4%	76.6%
GPT-3 (CoT)	QCM→AE	0.234	0.048	0.351	0.561	76.9%	73.0%
GPT-3 (CoT)	QCM→ALE	0.192	0.052	0.323	0.595	88.5%	78.8%

- We establish various baselines on ScienceQA
- Heuristic baselines: random chance and human performance Fine-tuning VQA models
- Pre-trained and fine-tuning UnifiedQA
- Zero-shot and few-shot GPT-3

To mimic the multi-hop reasoning process, we further build GPT-3 via chain-of-thought (CoT) prompting to generate the answer followed by the lecture and explanation

- can
- ro-SOTA

76.1% 56.9% 70.5% 52.5% 84.5% 65.2%

- Complete Gold Fine-tuning models (UnifiedQA) generate similar explanations to training data • The explanations generated by GPT-3
 - (CoT) conform best to human judgment

Different prompt types

r i ompe eg pe	Samping	1 1 1
QCML*→A	Random	73
$QCML^* \rightarrow AE$	Random	74
$QCME^* \rightarrow A$	Random	94
QCMLE* \rightarrow A	Random	94
QCM→ALE	Random	75

Dynamic sampling

Prompt type	Sampling	A
QCM→ALE	Dynamic (same topic)	
QCM→ALE	Dynamic (same category)	
QCM→ALE	Dynamic (same skill)	

Successful example from GPT-3 CoT

Question: What do these two changes have in common?\n bleaching clothes\n

a piece of apple turning brown\r

Options: (A) Both are only physical changes. (B) Both are caused by cooling. (C) Both are chemical changes. (D) Both are caused by heating. \n Answer: The answer is C. BECAUSE: A physical change is a change to a substance that does not change what the substance is. A physical change only changes the substance's physical properties, such as its size, shape, or color.\nA chemical change is a change to a substance that changes what the substance is. A chemical change changes the substance's chemical properties, such as its chemical structure.\nThe changes that you listed are **both chemical changes**.\nWhen you **bleach clothes**, the chemical structure of the fabric changes. This change makes the fabric less likely to hold color.\n When a piece of fruit turns brown, the chemical structure of the fruit changes. This change makes the fruit taste different.

Failure cases from GPT-3 CoT

Ouestion: Which month is the wettest on average in Christchurch? **Context:** Use the graph to answer the question below. A series of photographs showing a variety of colorful objects.

Answer: The answer is **B. BECAUSE:** The graph shows the average monthly rainfall in Christchurch from 1971 to 2000.\nThe wettest month on average is December, with an average rainfall of 154.8 mm.\nThe second wettest month is May, with an average rainfall of 153.1 mm.\nThe third wettest month is April, with an average rainfall of 151.4 mm.

Case Study

Question: Is the following trait inherited or acquired? Marshall has five fingers on each hand. **Context:** Hint: Marshall was born with five fingers on each hand. **Options:** (A) acquired (B) inherited **Answer: The answer is B. BECAUSE:**

Marshall was born with five fingers on each hand. This trait was inherited from Marshall's parents.

Project Page https://scienceqa.github.io

• Fail to understand multimodal inputs and lack domain knowledge to predict correct answers Generate the wrong chain of thought with **irrelevant**, **incorrect**, or **incomplete** information